Literatura

[1]   P. A. Zyla et al. (Particle Data Group), The Review of Particle Physics, Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

[2]   T. Sjöstrand, S. Mrenna, P. Skands, Pythia6.4 Physics and Manual, JHEP 05 (2006) 026, viz. též http://projects.hepforge.org/pythia6

[3]   J. Chýla, Quarks, Partons and Quantum Chromodynamics, http://www-hep2.fzu.cz/˜chyla/lectures/text.pdf

[4]   W. R. Leo, Techniques for Nuclear and Particle Physics Experiments. A How-to Approach, Springer-Verlag Berlin, 1994

[5]   I. Úlehla, M. Suk, Z. Trka, Atomy, jádra, částice, Academia Praha, 1990

[6]   J. Chadwick, Possible Existence of a Neutron, Nature, 129, 312 (1932)

[7]   C. D. Anderson, The Positive Electron, Phys. Rev. 43, 491 (1933)

[8]   J. C. Street, E. C. Stevenson, New Evidence for the Existence of a Particle of Mass Intermediate Between the Proton and Electron, Phys. Rev. 52, 1003 (1937)

[9]   C. M. G. Lattes, G. P. S. Occhialini, C. F. Powell, Observations on the Tracks of Slow Meson in Photographic Emulsions, Nature 160, 453 (1947)

[10]   W. K. H. Panofsky, R. L. Aamodt, J. Hadley, The Gamma-Ray Spectrum Resulting from Capture of Negative π-Mesons in Hydrogen and Deuterium, Phys. Rev. 81, 565 (1951)

[11]   R. Bjorklund, W. E. Crandall, B. J. Moyer, H. F. York, High Energy Photons from Proton-Nucleon Collisions, Phys. Rev. 77, 213 (1950)

[12]   A. Pevsner et al., Evidence for a Three Pion Resonance Near 550 MeV, Phys. Rev. Lett. 9, 175 (1962)

[13]   O. Chamberlain, E. Segre, C. Wiegand, T. Ypsilantis, Observation of Antiprotons, Phys. Rev. 100, 947 (1955)

[14]   O. Chamberlain et al, Example of an Antiproton-Nucleon Annihilation, Pjys. Rev. 102, 921 (1956)

[15]   L. Leprince-Ringuet, M. L’Héritier, Existence probable d’une particule de masse 990me dans la rayonement cosmique, Comptes Rendus Acad. Sci., décembre 1944, 219, p. 618

[16]   R. Armenteros, K. H. Barker, C. C. Butler, A. Cachon, Phil. Mag. 42 (1951) 1113

[17]   https://twiki.cern.ch/twiki/bin/view/AtlasPublic/InDetTrackingPerformance
ApprovedPlots

[18]   G. D. Rochester, C. C. Butler, Evidence for the Existence of New Unstable Elementary Particles, Nature, 160, 885 (1947)

[19]   R. K. Adair, Angular Distribution of Λ0 and 𝜃0 Decays, Phys. Rev. 100, 1540 (1955)

[20]   D. L. Clark, A. Roberts, R. Wilson, Cross Section for the Reaction π+ + d p + p and the Spin of the π+ Meson, Phys. Rev. 83, 649 (1951)

[21]   W. F. Cartwright, C. Richman, M. N. Whitehead, H. A. Wilcox, The production of Positive Pions by 341-MeV Protons on Protons, Phys. Rev. 91, 677 (1953)

[22]   C. S. Wu et al, Experimental Test of Parity Conservation in Beta Decay, Phys. Rev. 105, 1413 (1957)

[23]   R. L. Garwin, L. M. Lederman, M. Weinrich, Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: the Magnetic Moment of the Free Muon, Phys. Rev. 105, 1415 (1957)

[24]   J. I. Friedman, V. L. Telegdi, Nuclear Emulsion Evidence for Parity Non-conservation in the Decay Chain π+ μ+ e+, Phys. Rev. 105, 1681 (1957)

[25]   M. S. Sozzi, Discrete Symmetries and CP Violation, Oxford University Press, 2008

[26]   http://www.g-2.bnl.gov/

[27]   D. A. Hill, K. K. Li, E. W. Jenkins, T. F. Kyncia, H. Ruderman, Measurement of the Λ Magnetic Moment, Phys. Rev. D 4, 1979 (1971)

[28]   V. E. Barnes et al., Observation of a Hyperon with Strangeness Minus Three, Phys. Rev. Lett. 12, 204 (1964)

[29]   H. Giorgi, Weak Interactions and Modern Particle Theory, Adison-Wesley Publishing Company, 1984

[30]   J. J. J. Kokkedee, The Quark Model, W. A. Benjamin, Inc., New York/Amsterdam, 1969

[31]   M. Peskin, D. V. Schroeder, An Introduction to Quantum Field Theory, Cambridge Perseus Books, 1995

[32]   J. Hořejší, Fundamentals of electroweak theory, Karolinum Press, 2002

[33]   R. N. Cahn, G. Goldhaber, The Experimental Foundations of Particle Physics, Cambridge University Press, 1989

[34]   S. W. Herb et al., Observation of a Dimuon Resonance at 9.5 GeV in 400 GeV Proton Nucleus Collisions, Phys. Rev. Lett. 39, 252 (1977)

[35]   A. M. Boyarski et al., Quantum Numbers and Decay Widths of the ψ(3095), Phys. Rev. Lett. 34, 1357 (1975)

[36]   C. L. Cowan, F. Reines, F. B. Harrison, H. W. Cruse, A. D. McGuire, Detection of the Free Neutrino: a Confirmation, Science 124 (3312), 1956, 103–104
F. Reines, C. L. Cowan, Free Neutrino Absorption Cross Section I. Measurement of the Free Antinetrino Absorption Cross Section by Protons, Phys. Rev. 113 (1959), 273

[37]   R. G. Arns, Detecting the Neutrino, Phys. Perspect. 3 (2001) 314

[38]   http://www-ik.fzk.de/˜katrin/index.html

[39]   M. Aker et al., Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN, Phys. Rev. Lett. 123, 221802 (2019)

[40]   G. Dangby et al, Observation of High Energy Neutrino Reactions and the Existence of Two Kinds of Neutrinos, Phys. Rev. Lett. 9, 36 (1962)

[41]   K. Assamagan et al, Upper limit of the muon-neutrino mass and charged-pion mass from momentum analysis of a surface muon beam, Phys. Rev. D 53, 6065–6077 (1996)

[42]   M. L. Perl et al., Evidence for Anomalous Lepton Production in ee+ Annihilation, Phys. Rev. Lett. 35, 1489 (1975)

[43]   http://www-donut.fnal.gov/

[44]   K. Kodama et al, Observation of tau neutrino interactions, Physics Letters B 504 (2001) 218

[45]   R. Barate et al, An upper limit on the τ neutrino mass from three- and five-prong tau decays, Eur. Phys. J. C2 (1998) 395-406

[46]   M. Goldhaber, L. Grodzins, A. W. Sunyar, Helicity of Neutrinos, Phys. Rev. 109, 1015 (1958)

[47]   http://nemo.in2p3.fr/physics/

[48]   http://majorana.npl.washington.edu/index.php

[49]   H. V. Klapdor-Kleingrothaus, I. V. Krivosheina, The Evidence for the Observation of 0νββ Decay: the Identification of 0νββ Events from the Full Spectra, Mod. Phys. Lett. A 21 (2006), 1547

[50]   F. Boehms, P. Vogel, Physics of Massive Neutrinos, Cambridge University Press, 2nd edition, 1992

[51]   S. M. Bilenky, Majorana neutrino mixing, J. Phys. G: Nucl. Part. Phys. 32 R 127, 2006

[52]   R. N. Mohapatra, P. B. Pal, Massive Neutrinos In Physics and Astrophysics, World Scientific, 1998

[53]   http://www.nndc.bnl.gov/nudat2/

[54]   J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Evidence for the 2π Decay of the K02 Meson, Phys. Rev. Lett. 13, 138—140 (1964)

[55]   J. R. Battley et al., A Precision Measurement of Direct CP Violation in the Decay of Neutral Kaons into Two Pions, Phys. Lett. 544B, 97 (2002)

[56]   A. Alavi-Harati et al., Measurement of Direct CP Violation, CPT Symmetry, and Other Parameters in the Neutral Kaon System, Phys. Rev. D67, 012005 (2003)

[57]   W. Greiner, B. Müller, Gauge theory of weak interactions, 2nd edition, Springer-Verlag, 1996

[58]   C. Gray, B Mixing, arXiv:hep-ex/0103016v1, 2001

[59]   F. Abe et al, Search for B0s-B0 s Oscillations Using the Semileptonic Decay B0 s ϕ0+, Phys. Rev. Lett. 82, 3576–3580 (1999)

[60]   F. J. Hassert et al, Observation of Neutrino-like Interactions without Muon or Electron in the Gargamelle Neutrino Experiments, Phys. Lett., 46B, 138 (1973)

[61]   G. Arnison et al., Experimental observation of isolated large transverse energy electrons with associated missing energy at √ -
  s = 540 GeV, Phys. Lett., 122B, 103 (1983)
G. Arnison et al., Experimental observation of lepton pairs of invariant mass around 95 GeV/c2 at the CERN SPS collider, Phys. Lett., 126B, 398 (1983)

[62]   M. Banner et al., Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN pp collider, Phys. Lett., 122B, 476 (1983)
P. Bagnaia et al., Evidence for Z0 e+e at the CERN pp collider, Phys. Lett., 129B, 130 (1983)

[63]   ALEPH, DELPHI, L3, OPAL, and SLD Collaborations, and LEP Electroweak Working Group, and SLD Electroweak Group, and SLD Heavy Flavour Group, Phys. Reports 427, 257 (2006).

[64]   J. Hořejší, Elektroslabé sjednocení a stromová unitarita, Karolinum Press, 1993

[65]   F. Abe et al. (CDF Collaboration), Observation of Top Quark Production in pp Collisions with the Collider Experiment at Fermilab, Phys. Rev. Lett. 74, 2626 (1995)
S. Abachi et al. (D0 Collaboration), Observation of the Top Quark, Phys. Rev. Lett. 74, 2632 (1995)

[66]   J. F. Gunion, H. E. Haber, G. Kane, S. Dawson, The Higgs Hunter’s Guide, Perseus Books, 1990

[67]   The ALEPH, DELPHI, L3, OPAL Collaborations and the LEP Working Group for Higgs Boson Searches, Search for the Standard Model Higgs boson at LEP, Phys. Lett. B 565 (2003), 61-75

[68]   The ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1

[69]   The CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30

[70]   T. Aaltonen et al (CDF Collaboration, D0 Collaboration), Higgs boson studies at the Tevatron, Phys. Rev. D 88, 052014 (2013)

[71]   The CMS Collaboration, Evidence for Higgs boson decay to a pair of muons, JHEP 01 (2021) 148

[72]   R. Davis, Jr., D. S. Harmer, K. C. Hoffman: Search for Neutrinos from the Sun, Phys. Rev. Lett., 20, 1205 (1968)

[73]   J. N. Abdurashitov et al, Measurement of the solar neutrino capture rate with gallium metal. III. Results for the 2002–2007 data-taking period, Phys. Rev. C 80, 015807 (2009)

[74]   F. Kaether et al, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010), 47–54

[75]   Y. Fukuda et al. (Super-Kamiokande collaboration), Measurements of the Solar Neutrino Flux from Super-Kamiokande’s First 300 Days, Phys. Rev. Lett. 81 (1998) 1158-1162

[76]   SNO Collaboration: Direct Evidence for Neutrino Flavour Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett., 89, 011301 (2002)

[77]   Super-Kamiokande Collaboration: Evidence for Oscillations of Atmospheric Neutrinos, Phys. Rev. Lett., 81, 1562 (1998)

[78]   P. Adamson et al., Search for active neutrino disappearance using neutral-current interactions in the MINOS long-baseline experiment, Phys. Rev. Lett. 101, 221804 (2008), Issue 22

[79]   M. H. Ahn et al. (K2K collaboration), Measurement of Neutrino Oscillation by the K2K Experiment, Phys. Rev. D 74, 072003 (2006)

[80]   Y. Itow et al., The JHF-Kamioka neutrino project, arXiv:hep-ex/0106019v1, 2001

[81]   N. Agafonova et al. (OPERA Collaboration), Observation of a first candidate in the OPERA experiment in the CNGS beam, Phys. Lett. B 691 (2010) 138-145

[82]   S. Abe et al. (KamLAND Collaboration), Precision Measurement of Neutrino Oscillation Parameters with KamLAND, Phys. Rev. Lett. 100 (2008) 221803

[83]   Xinheng Guo et al. (Daya-Bay Collaboration), A Precision measurement of the neutrino mixing angle theta(13) using reactor antineutrinos at Daya-Bay, arXiv:hep-ex/0701029, 2007

[84]   J. K. Ahn et al. (RENO Collaboration), RENO: An Experiment for Neutrino Oscillation Parameter Θ13 Using Reactor Neutrinos at Yonggwang, arXiv:hep-ex/1003.1391, 2010

[85]   F. Ardellier et al. (Double Chooz Collaboration), Double Chooz: A Search for the neutrino mixing angle theta(13), arXiv:hep-ex/0606025, 2006
M. Apollonio et al. (CHOOZ Collaboration), Limits on neutrino oscillations from the CHOOZ experiment, Phys. Lett. B 466 (1999) 415-430, arXiv:hep-ex/9907037

[86]   F. P. An et al. (DAYA-BAY Collaboration), Observation of electron-antineutrino disappearance at Daya Bay, arXiv:hep-ex/1203.1669, 2012

[87]   J. K. Ahn et al. (RENO Collaboration), Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment, arXiv:hep-ex/1204.0626, 2012

[88]   http://www-nova.fnal.gov/

[89]   R. M. Bionta et al., Observation of a Neutrino Burst in Coincidence with Supernova 1987A in the Large Magellanic Cloud, Phys. Rev. Lett. 58 (1987) 1494