Determination of the light quark masses
The m_u and m_d quark masses from $\eta \rightarrow 3\pi$ decay

Martin Zdráhal
Institute of Particle and Nuclear Physics
Faculty of Mathematics and Physics
Charles University, Czech Republic

Work performed in cooperation with K. Kampf, M. Knecht and J. Novotný
[aka Prague-(Lund)-Marseille Dispersive Treatment].
Determination of the current masses of u, d and s quarks

- quark confinement prohibits their direct determination
- determination – from comparison of theoret. prediction for some observable depending on quark masses with the corresponding experimental value

Methods

- effective theories for QCD – chiral perturbation theory
- QCD sum-rules – analytic properties of hadronic spectral functions + OPE
- lattice QCD

Advantages and disadvantages of SR and lattice

- m_s and $\hat{m} = \frac{m_u + m_d}{2}$ determined independently with compatible results
- isospin breaking effects on the observables studied by these methods generated by $m_u - m_d$ difference and by EM interactions of the same order, however, elmag. corrections problematic for both of them
- isospin breaking effects in both methods nowadays need additional input
Use of χPT

- can determine only quark mass ratios and needs some input fixing the physical definition of the masses (Kaplan-Manohar ambiguity)
- For a more precise determination of the light quark masses it is therefore useful to combine isospin symmetric results of lattice QCD and sum rules with some isospin breaking study performed in χPT.

$\eta \to 3\pi$ in χPT

- proceeds via IB effects; moreover direct effect of EM on the amplitude small \Rightarrow proportional to $m_d - m_u \sim \frac{1}{R}$; measurement of its decay rate $\sim R$
- two-loop χPT computation exists, but
 - large corrections in first three successive orders
 - discrepancies between the experimentally measured and χPT predicted Dalitz parameters (describing energy dependence)
 - poor knowledge of C_i
- it inspired studies of the origin of the discrepancy and its effect on R
η → 3π: Alternative approaches

Origin of the discrepancy?

- incorrect determination of NNLO LECs C_i, effect of resonances
- higher-order final state rescatterings
- influence of slow convergence of $\pi\pi$ scattering or $\eta \rightarrow 3\pi$ amplitude
- unexpectedly large electromagnetic contribution, . . .

[B. Kubis, S. Schneider, C. Ditsche; S. Lanz, G. Colangelo, E. Passemar; M. Kolesár, J. Novotný; A. Nehme, S. Zein.]

Its influence on R determination

The approaches taking different assumptions than ChPT do not fix normalization (there do not appear m_q explicitly).

⇒ in order to address this question, unavoidable to match to ChPT
 ⇒ need to find a region where both these approaches compatible.

The only approaches addressing this question by employing the $\eta \rightarrow \pi^+\pi^-\pi^0$ so far are the two dispersive approaches.
Dispersive approaches – the main differences

- Isospin breaking parameters:
 \(\hat{m} = \frac{m_u + m_d}{2}, \quad r = \frac{m_s}{\hat{m}} \)

\[
Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}
\]

\[
\leftarrow Q = \frac{1}{2} R(r + 1) \rightarrow
\]

\[
R = \frac{m_s - \hat{m}}{m_d - m_u}
\]

- At NLO

Advantages of using \(Q \)
- Expressible using only QCD meson masses
- Reasonably stable w.r.t. Kaplan-Manohar

Advantages of using \(R \)
- Nothing special (maybe better connection to baryon physics?)
Dispersive approaches – the main differences

- isospin breaking parameters ($\hat{m} = \frac{m_u + m_d}{2}$, $r = \frac{m_s}{\hat{m}}$)

$$Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$$

$\leftarrow Q = \frac{1}{2} R(r+1) \rightarrow$

$$R = \frac{m_s - \hat{m}}{m_d - m_u}$$

- at NLO

Advantages of using Q
- expressible using only QCD meson masses
- reasonably stable w.r.t. Kaplan-Manohar

Advantages of using R
- Nothing special (maybe better connection to baryon physics?)

- at higher orders

Advantages of using Q
- both of them lost – the relation obtains r-dependent corrections
- better connection to NLO
- historical reasons

Advantages of using R
- Direct connection to the two-loop χPT computation - not explicitly dependent on r (but determination of values of L_i is)
- Kaplan-Manohar has to be fixed from elsewhere (L_is from Lattice, large N_c, . . .)
Dispersive approaches – the main differences

What do we have in common?

- construct a parametrization by using dispersive relations and the two-particle unitarity ⇒ dispersive
- parameters stem from the subtraction polynomials of the dispersive relations
- use that parametrization for correcting the chiral results or more-or-less fit the experimental data in order to determine R

The most obvious differences:

Analytical perturbative dispersive approach of KKNZ

- proceeds order by order in the construction of the amplitude
- the original guiding principle was a direct correspondence to χ amplitude
- all of the computations are performed analytically

Numerical fully dispersive approach of Bern

- searches a stable point of the dispersive relations
- the original guiding principle was to include $\pi\pi$ rescatterings to all orders
- the computations are performed numerically
Dispersive approaches – the main differences

The form of the parametrization

\[M(s, t, u) = \text{Normalization} \ (\text{Polynomial} + \text{Unitary part}) \]

Normalization:

- **KKNZ**: Constant
- **Bern**: Omnès function containing elastic \(\pi \pi \) rescattering in S-channel

Polynomial:

- 6 parameters – a reasonable way how to estimate the error of neglecting higher imaginary parts of the parameters – can be added or neglected (good estimate)
- contain many various contributions that cannot be separated
- with a good statistics of data a clean fit (up to the normalization) possible

- 6 parameters – less number of parameters was insufficient
- imaginary parts of the parameters – Taylor expand the amplitude and seems its coefficients small or can be added
- should be more stable w.r.t. iterations; effect of \(\pi \pi \) rescattering separated
- do they use the Adler staff really just for fixing the normalization?
Dispersive approaches – the main differences

The form of the parametrization

\[M(s, t, u) = \text{Normalization} \, (\text{Polynomial} + \text{Unitary part}) \]

Normalization:

KKNZ
- Constant

Bern
- Omnès function containing elastic $\pi\pi$ rescattering in S-channel

Unitary part:
- stems from the $\pi\pi$ rescattering in all (crossed) channels
- parameters from Polynomial multiplied by polynomials in Mandelstam variables and by combinations of 5 kinematical functions
- depends on $\pi\pi$ scattering parameters
- inclusion of higher than 2-loop orders only through addition of higher chiral parts of constants and physical $\pi\pi$ p.
Dispersive approaches – the main differences

The form of the parametrization

\[M(s, t, u) = \text{Normalization} (\text{Polynomial} + \text{Unitary part}) \]

Normalization:

KKNZ
Constant

Bern
Omnès function containing elastic \(\pi \pi \) rescattering in S-channel

Additional extensions:
Would you like to add inelastic contributions for the price of having more free parameters? O.K.
Would you like to have results that take into account \(m_{\pi \pm} \neq m_{\pi^0} \)? O.K. with additional free parameters.
Fits to our parametrization

Fit of a model

The amplitude can be written in the form

\[M(s, t, u) = A_x f_A(s, t, u) + B_x f_B(s, t, u) + C_x f_C(s, t, u) + D_x f_D(s, t, u)
+ E_x (s - s_0)^3 + F \left[(t - s_0)^3 + (u - s_0)^3 \right], \]

where \(f_i(s, t, u) \) are "simple" functions of \(s, t, u \) and \(\pi\pi \) scattering parameters.

⇒ simple linear fit of the model

Fit of NNLO ChPT

Worked well.
We have tried to add also higher order \(\pi\pi \) rescattering by changing the unitarity part → the Dalitz plot parameters moved in the right direction, but the difference was reduced just by 10%. We would need to change also the polynomial part.
Fit of a model

The amplitude can be written in the form

\[M(s, t, u) = A_x f_A(s, t, u) + B_x f_B(s, t, u) + C_x f_C(s, t, u) + D_x f_D(s, t, u) + E_x (s - s_0)^3 + F \left[(t - s_0)^3 + (u - s_0)^3 \right], \]

where \(f_i(s, t, u) \) are "simple" functions of \(s, t, u \) and \(\pi\pi \) scattering parameters.

⇒ simple linear fit of the model

Fit of an experiment

Data are on \(|M(s, t, u)|^2\), which is not linear but quadratic in the parameters. But it has worked so far for:

- very optimistic data set constructed from KLOE 2008 (2500 data points)
- realistic data set constructed from KLOE 2008 (154 points)

Analysis of real data from WasaCOSY 20 with 50 data points under progress.
Our analysis I: correcting values of C_i's

Even though the individual Dalitz parameters differ significantly, there exist C_i-independent combinations of them and their central values are in concordance. ⇒ We study this possibility.

<table>
<thead>
<tr>
<th>C_i-independent combinations of Dalitz parameters ($m_{\pi\pm} = m_{\pi^0}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. rel$_1$: $4(b + d) - a^2 - 16\alpha$</td>
</tr>
<tr>
<td>2. rel$_2$: $a^3 - 4ab + 4ad + 8f - 8g$</td>
</tr>
<tr>
<td>3. rel$_3$: β</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dalitz Parameter</th>
<th>KLOE</th>
<th>χPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-1.09 ± 0.02</td>
<td>-1.271 ± 0.075</td>
</tr>
<tr>
<td>b</td>
<td>0.124 ± 0.012</td>
<td>0.394 ± 0.102</td>
</tr>
<tr>
<td>d</td>
<td>0.057 ± 0.017</td>
<td>0.055 ± 0.057</td>
</tr>
<tr>
<td>f</td>
<td>0.14 ± 0.02</td>
<td>0.025 ± 0.160</td>
</tr>
<tr>
<td>g</td>
<td>~ 0</td>
<td>0</td>
</tr>
<tr>
<td>α</td>
<td>-0.030 ± 0.005</td>
<td>0.013 ± 0.016</td>
</tr>
</tbody>
</table>

Change of C_i's reflects in a shift of the polynomial part of the amplitude $\Delta P(s, t, u)$. We fit the "corrected amplitude" to KLOE parametrization. ⇒ Reasonably small ΔP.

Optimistic KLOE distribution

\[R = 37.7 \pm 2.9. \]

More conservative estimate

\[R = 30^{+14}_{-12}. \]
imposing nothing about the origin of the Dalitz paramet. discrepancy

the parametrization employs just general properties of $M(s, t, u)$ and the observed hierarchy of various contributions ⇒ Whatever the explanation of the discrepancies is, we assume the physical amplitude fulfills these assumptions.

Physical normalization of the amplitude

We need at least 1 point from ChPT, where physics is reproduced well.
Where is the Adler zero?

- in the \(m_u = m_d = 0 \) limit the amplitude in the point \(s = t = 0 \) (and its \(s = u \) brother) has to be zero
- this point can move anywhere in the distance of order \(O(m^2_\pi) \)
- at that point the (real and imaginary parts of) amplitude is of order \(O(m^2_\pi) \), i.e. if we use the naturality condition, it should be there significantly smaller than say at the center of the Dalitz plot
- no statement about chiral convergence of the amplitude
Our requirements for the correct regions

- the matching should be dependent on the values of C_i's as less as possible; ✓
- within this region the chiral expansion should work well;
- also the higher corrections should be small there;
- the physical amplitude should have the similar behavior as the chiral amplitude inside the region.

The exact procedure for fixing the normalization

- match only the imaginary part of the ChPT under the physical threshold
Physical normalization of the amplitude – results

Our requirements for the correct regions

- the matching should be dependent on the values of \(C_i \)'s as less as possible; ✓
- within this region the chiral expansion should work well; ✓
- also the higher corrections should be small there;
- the physical amplitude should have the similar behavior as the chiral amplitude inside the region.
Our requirements for the correct regions

- the matching should be dependent on the values of C_i's as less as possible; ✓
- within this region the chiral expansion should work well; ✓
- also the higher corrections should be small there;
- the physical amplitude should have the similar behavior as the chiral amplitude inside the region. ✓
Physical normalization of the amplitude – results

Our requirements for the correct regions

- the matching should be dependent on the values of C_i's as less as possible; ✓
- within this region the chiral expansion should work well; ✓
- also the higher corrections should be small there;
- the physical amplitude should have the similar behavior as the chiral amplitude inside the region. ✓

The exact procedure for fixing the normalization

- match only the imaginary part of the ChPT under the physical threshold
- fit on $t = u$ cut for $s \in (0.04 \text{ GeV}^2, 4m_{\pi}^2)$
Physical normalization of the amplitude – results

Our requirements for the correct regions

- the matching should be dependent on the values of C_i's as less as possible; ✓
- within this region the chiral expansion should work well; ✓
- also the higher corrections should be small there; ✓
- the physical amplitude should have the similar behavior as the chiral amplitude inside the region. ✓

The exact procedure for fixing the normalization

- match only the imaginary part of the ChPT under the physical threshold
- fit on $t = u$ cut for $s \in (0.04 \text{ GeV}^2, 4m_{\pi}^2)$
- use the interpolation between the ObO and the “resummed” fit to ChPT
Physical normalization of the amplitude – results

Our requirements for the correct regions

- the matching should be dependent on the values of C_i’s as less as possible; ✓
- within this region the chiral expansion should work well; ✓
- also the higher corrections should be small there; ✓
- the physical amplitude should have the similar behavior as the chiral amplitude inside the region. ✓

The exact procedure for fixing the normalization

- match only the imaginary part of the ChPT under the physical threshold
- fit on $t = u$ cut for $s \in (0.04 \text{ GeV}^2, 4m_{\pi}^2)$
- use the interpolation between the ObO and the “resummed” fit to ChPT

Result of this analysis: $R = 39.6^{+2.5}_{-5.1}$
Lesson in the extrapolations

Real part of the amplitude in the \(s = u \) cut
Lesson in the extrapolations

Real part of the amplitude in the $s = u$ cut
Lesson in the extrapolations

Real part of the amplitude in the \(s = u \) cut

Statistical error in \(F \)
Lesson in the extrapolations

Real part of the amplitude in the $s = u$ cut

Mild dependence on F
Lesson in the extrapolations

Real part of the amplitude in the \(s = u \) cut

![Graph of the real part of the amplitude in the \(s = u \) cut](image1)

Imaginary part in the \(s = u \) cut

![Graph of the imaginary part of the amplitude in the \(s = u \) cut](image2)
Combined result

These two analyses have different assumptions and sources of errors, however, lead to compatible results, we can combine them into

Final result for OPT distribution

\[
R = 37.7 \pm 2.2.
\]

Estimating the error connected with the dependence on the “physical” distribution used in the fit, the more conservative value is

Final result

\[
R_2 = 39.6^{+2.5}_{-5.1}.
\]

Combination with the other constraints on quark masses from SR, Lattice, ...

Our final results for \(m_q\) characteristics

\[
\frac{m_u}{m_d} = 0.50^{+0.02}_{-0.05} \ [0.48(2)],
\]

\[
Q = 23.7^{+0.8}_{-1.5} \ [23.2(7)],
\]

quark masses in \(\overline{MS}\) at \(\mu = 2\) GeV

\[
m_u = 2.29^{+0.10}_{-0.17} \text{ MeV} \ [2.21(9) \text{ MeV}],
\]

\[
m_d = 4.57^{+0.19}_{-0.14} \text{ MeV} \ [4.62(12) \text{ MeV}].
\]