Ab initio calculations of $^3\text{H}(d,n)^4\text{He}$ fusion

Third International Workshop on Compound Nuclear Reactions and Related Topics, CNR*11
Prague, September 19-23, 2011

Petr Navratil | TRIUMF

In collaboration with Sofia Quaglioni (LLNL)
Deuterium-Tritium fusion: a future energy source

- The $d^3H \rightarrow n^4He$ reaction
 - The most promising for the production of fusion energy in the near future
 - Will be used to achieve inertial-confinement (laser-induced) fusion at NIF, and magnetic-confinement fusion at ITER
 - With its mirror reaction, $^3He(d,p)^4He$, important for Big Bang nucleosynthesis

Resonance at $E_{cm} = 48$ keV ($E_d = 105$ keV) in the $J=3/2^+$ channel
Cross section at the peak: 4.88 b

17.64 MeV energy released:
14.1 MeV neutron and 3.5 MeV alpha
Ab initio calculation of the Deuterium-Tritium fusion

- The $d^+\text{^3}H\rightarrow n^+\text{^4}He$ reaction
 - Many experimental cross section measurements

- Unresolved issues remain
 - Cross section dependence on polarization of the d and $\text{^3}H$ nuclei less well known
 - Cross section modification due to the plasma environment (electron screening)
 - Mirror reaction $d^-\text{^3}He\rightarrow p^+\text{^4}He$ has larger uncertainties
 - Related reactions, i.e., $\text{^3}H(d,y)^5\text{He}$, $\text{^3}H(\text{^3}H,2n)^4\text{He}$, much less known, hard to measure

- From first principles or ab initio:
 - Nuclei as systems of nucleons interacting by nucleon-nucleon (and 3N) forces that describe accurately nucleon-nucleon (and $A=3$) systems

Ab initio theory can help shedding light on some of these issues: never attempted before!
Our many-body technique:

- **Combine** the *ab initio* no-core shell model (NCSM) with the resonating group method (RGM)

- **The NCSM:** An approach to the solution of the A-nucleon bound-state problem
 - Accurate nuclear Hamiltonian
 - Finite harmonic oscillator (HO) basis
 - Complete $N_{\text{max}}\Omega$ model space
 - Effective interaction due to the model space truncation
 - Similarity-Renormalization-Group evolved $NN(+NNN)$ potential
 - Short & medium range correlations
 - No continuum

- **The RGM:** A microscopic approach to the A-nucleon scattering of clusters
 - Nuclear Hamiltonian may be simplistic
 - Cluster wave functions may be simplified and inconsistent with the nuclear Hamiltonian
 - Long range correlations, relative motion of clusters

Ab initio NCSM/RGM: Combines the best of both approaches

Accurate nuclear Hamiltonian, **consistent** cluster wave functions

Correct asymptotic expansion, Pauli principle and translational invariance
The \textit{ab initio} NCSM/RGM in a snapshot

- Ansatz: \(\Psi^{(A)} = \sum \int d\vec{r} \phi_v(\vec{r}) \hat{A} \Phi^{(A-a,a)}_{\mu^\nu} \)

 \[H \Psi^{(A)} = E \Psi^{(A)} \]

 \[\sum \int d\vec{r} \left[\mathcal{H}^{(A-a,a)}_{\mu^\nu}(\vec{r}', \vec{r}) - E \mathcal{N}^{(A-a,a)}_{\mu^\nu}(\vec{r}', \vec{r}) \right] \phi_v(\vec{r}) = 0 \]

 \[\langle \Phi^{(A-a,a)}_{\mu^\nu} \left| \hat{A} H \hat{A} \right| \Phi^{(A-a,a)}_{\mu^\nu} \rangle \]
 \[\langle \Phi^{(A-a,a)}_{\mu^\nu} \left| \hat{A}^2 \right| \Phi^{(A-a,a)}_{\mu^\nu} \rangle \]
 \[\text{Hamiltonian kernel} \quad \text{Norm kernel} \]

- Many-body Schrödinger equation:

- \text{eigenstates of } H_{(A-a)} \text{ and } H_{(a)} \text{ in the } \text{ab initio} \text{ NCSM basis}

- Realistic nuclear Hamiltonian
Localized parts of kernels expanded in the HO basis

\[
\mathcal{N}_{\mu\ell',\nu\ell}^{(A-1,1)} (r', r) = \delta_{\mu\nu} \delta_{\ell\ell'} \frac{\delta(r' - r)}{r' r} (A - 1) \sum_{n'n} R_{n'\ell'}(r') \langle \Phi_{\mu\ell' n'n}^{(A-1,1)JT} | P_{A-1} | \Phi_{\nu\ell n}^{(A-1,1)JT} \rangle R_{n\ell}(r)
\]

\[
\langle \psi_{\mu_1}^{(A-1)} | a^+ a | \psi_{\nu_1}^{(A-1)} \rangle_{SD}
\]

Single-nucleon projectile: the norm kernel
Ab initio calculation of the $^3\text{H}(d,n)^4\text{He}$ fusion: Equations

\[\int dr \ r^2 \left(\left\langle \frac{r'}{n} A_1 (H - E) \hat{A} \right| \varepsilon_n \right) \left(\left\langle \frac{r'}{n} A_2 (H - E) \hat{A} \right| \varepsilon_n \right) \left(\begin{array}{c} g_1(r) \\ g_2(r) \end{array} \right) = 0 \]
Solving the RGM equations

• The many-body problem has been reduced to a two-body problem!
 – Macroscopic degrees of freedom: nucleon clusters
 – Unknowns: relative wave function between the two clusters

• Non-local integral-differential coupled-channel equations:

\[
\left[T_{rel}(r) + V_C(r) + E^{(A-a)}_{\alpha_1} + E^{(a)}_{\alpha_2} \right] u^{(A-a,a)}_\nu(r) + \sum_{a'v'} \int dr'r' W_{av,a'v'}(r,r') u^{(A-a',a')}_{v'}(r') = 0
\]

• Solve with R-matrix theory on Lagrange mesh imposing
 – Bound state boundary conditions ➔ eigenenergy + eigenfunction
 – Scattering state boundary conditions ➔ Scattering matrix
 • Phase shifts
 • Cross sections
 • ...

The R-matrix theory on Lagrange mesh is an elegant and powerful technique, particularly for calculations with non-local potentials
Input: \(NN \) interaction, \(^2H, ^3H, ^3He, ^4He \) eigenstates

- Similarity-Renormalization-Group (SRG) evolved chiral \(N^3LO \) \(NN \) interaction
 - Accurate
 - Soft: Evolution parameter \(\Lambda \)
 - Study dependence on \(\Lambda \)
 - NNN interaction interaction effects for \(\Lambda=3,4,5 \) partly included for \(\Lambda\sim1.5 \text{ fm}^{-1} \)

- \(^2H, ^3H, ^3He, ^4He \)
 - NCSM up to \(N_{\text{max}}=12 \): Sufficient for the selected NN potential with \(\Lambda=1.5 \text{ fm}^{-1} \)
 - Variational calculation
 - Optimal HO frequency from the ground-state minimum: Different for \(^3H \) and \(^4He \)
 - Select: \(\hbar\Omega=14 \text{ MeV} \)

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{\(E_{\text{g.s.}} \) [MeV]} & \(^2H \) & \(^3H \) & \(^3He \) & \(^4He \) \\
\hline
\textbf{Calc.} & -2.20 & -8.27 & -7.53 & -28.22 \\
\hline
\textbf{\(\langle r_p^2 \rangle^{1/2} \) [fm]} & \(^3H \) & \(^3He \) & \(^4He \) \\
\hline
\textbf{Calc.} & 1.64 & 1.81 & 1.49 \\
\textbf{Expt.} & 1.60 & 1.77 & 1.467(13) \\
\hline
\end{tabular}
\end{table}
d+³H and n+⁴He elastic scattering: phase shifts

- **d+³H elastic phase shifts:**
 - Resonance in the $^4S_{3/2}$ channel
 - Repulsive behavior in the $^2S_{1/2}$ channel → Pauli principle

- **n+⁴He elastic phase shifts:**
 - $d+³H$ channels produces slight increase of the P phase shifts
 - Appearance of resonance in the $3/2^+$ D-wave, just above $d-³H$ threshold

The $d-³H$ fusion takes place through a transition of $d+³H$ is S-wave to $n+⁴He$ in D-wave:

Importance of the **tensor force**
$^3\text{H}(d,n)^4\text{He}$ and $^3\text{He}(d,p)^4\text{He}$ cross sections

- NCSM/RGM:
 - $N_{\text{max}} = 13$
 - SRG-$N^3\text{LO}$ NN ($\Lambda=1.5$ fm$^{-1}$) potential
 - Only g.s. of d, ^3H, ^4He included above

$$S(E) = E\sigma(E)\exp\left(\frac{2\pi Z_1Z_2e^2}{\hbar\sqrt{2mE}}\right)$$
The cross section improves with the inclusion of virtual breakup of the deuteron

- Deuteron weakly bound: easily gets polarized and easily breaks
- These effects included below the breakup threshold with continuum discretized by pseudo-states

First *ab initio* results for d-3H and d-3He fusion:
Very promising, correct physics, can become competitive with fitted evaluations …
\(^3\text{H}(d,n)^4\text{He} \) cross section

- SRG-N\(^3\)LO (\(\Lambda=1.45 \text{ fm}^{-1}\)) NN potential
 - Position of the resonance matches experiment

S-factor narrower than the data
Resonance in the \(d^3\text{H}^4S_{1/2}\) partial wave
\(n^4\text{He}^2D_{3/2}\) decreasing, does not cross 90 degrees
$^3\text{H}(d,n)^4\text{He}$ S-factors at $E_{\text{kin}}=0$

<table>
<thead>
<tr>
<th>$S(0)$ [MeV b]</th>
<th>$^3\text{H}(d,n)^4\text{He}$</th>
<th>$^3\text{He}(d,p)^4\text{He}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRG-N3LO NN</td>
<td>10 ± 0.5</td>
<td>6.0 ± 0.2</td>
</tr>
<tr>
<td>R-matrix data eval.</td>
<td>11.7 ± 0.2</td>
<td>5.9 ± 0.3</td>
</tr>
</tbody>
</table>

- $\Lambda=1.45$ fm$^{-1}$ for $^3\text{H}(d,n)^4\text{He}$
- $\Lambda=1.5$ fm$^{-1}$ for $^3\text{H}(d,n)^4\text{He}$

$^3\text{He}(d,p)^4\text{He}$ in a good agreement with data evaluation

Strong electron screening in $^3\text{He}(d,p)^4\text{He}$ below 30 keV
Possibly some electron screening in $^3\text{H}(d,n)^4\text{He}$ below 10 keV

Improvements:
- Excitations of ^4He; n-p-^3H rather than d*, d”*
- Polarization of ^3H; NNN interaction
Conclusions and Outlook

- With the NCSM/RGM approach we are extending the *ab initio* effort to describe low-energy reactions and weakly-bound systems

- The first $^7\text{Be}(p,\gamma)^8\text{B}$ *ab initio* S-factor calculation

- Deuteron-projectile results with SRG-N3LO NN potentials:
 - d-^4He scattering
 - First *ab initio* study of $^3\text{H}(d,n)^4\text{He}$ & $^3\text{He}(d,p)^4\text{He}$ fusion

- Under way:
 - ^3He-^4He and ^3He-^3He scattering calculations
 - *Ab initio* NCSM with continuum (*NCSMC*)
 - Three-cluster NCSM/RGM and treatment of three-body continuum

- To do:
 - Inclusion of NNN force
 - Alpha clustering: ^4He projectile