Neutron-induced cross-sections via the surrogate method

G. Boutoux¹, B. Jurado¹, V. Méot², O. Roig², C. Théroine², M. Aïche¹, A. Bail², G. Barreau¹, E. Bauge², A. Blanc², J.T. Burke⁹, N. Capellan¹,⁷, P. Chau², I. Companis¹, S. Czajkowski¹, J.M. Daugas², X. Derkx⁵, L. Gaudefroy², F. Gunsing⁴, B. Haas¹, G. Kessedjian¹,⁷, I. Matea⁶, L. Mathieu¹, P. Morel², N. Pillet², M.G Porquet⁸, P. Romain², K.-H. Schmidt¹, O. Sérot³, J. Taieb², L. Tassan-Got⁶, I. Tsekhanovich¹

¹CENBG Bordeaux, CNRS/IN2P3, Université Bordeaux 1
²CEA – DAM – DIF
³CEA – Cadarache, DEN/DER/SPRC/LEPh
⁴CEA – Saclay, DSM/DAPNIA/SPhN
⁵GANIL, CNRS/CEA
⁶IPN Orsay, CNRS/IN2P3
⁷LPSC Grenoble, CNRS/IN2P3
⁸CSNSM Orsay, CRNS/IN2P3
⁹Lawrence Livermore National Laboratory, California, USA
Nucleosynthesis or origin of the nuclei in the Universe

Production of nuclei above 56Fe in the explosion of massive stars

Need of $\sigma(n,\gamma)$

Very difficult to measure – Short-lived nuclei!

Nuclear energy
- Minor-actinide incineration
- 232Th/233U cycle

$\sigma(n,f)$ and $\sigma(n,\gamma)$ needed in the energy range $1 \text{ keV} < E_n < 10 \text{ MeV}$
NEUTRON-INDUCED REACTION

\[\sigma_A^{(n,\chi)}(E_n) = \sigma_n^{CN}(E_n) \]

\[P^{CN}_\chi(E^*) \]

SURROGATE REACTIONS

Spin-parity mismatch?

The validity of the surrogate method need to be discussed...
\[P_\chi (E^*) = \sum_{J^\pi} P_{\text{form}}^{CN} (E^*, J^{\pi}) \cdot G_\chi (E^*, J^{\pi}) \]

- Probability that the CN is formed in the state \(\{E^*, J^\pi\} \)
- Branching ratios for the decay channel \(\chi \)
\[P_{\chi}(E^*) = \sum_{J^\pi} P^{CN}_{form}(E^*, J^\pi) \cdot G_{\chi}(E^*, J^\pi) \]

Neutron-induced reaction

Very difficult to model!

s-wave neutron \(\ell = \frac{1}{2}\hbar \)

\[<\ell> \approx 1\hbar \]

TALYS angular momentum distribution calculation

\[<\ell> \approx 4\hbar \]

DWBA angular momentum distribution calculation

\[\theta = 90^\circ \]

\[^{240}\text{Pu} \]

J.P. Delaroche et al., 2002
\[P_\chi (E^*) = \sum_{J^\pi} P_{\text{form}}^{\text{CN}} (E^*, J^\pi) \cdot G_\chi (E^*, J^\pi) \]

\(G_\chi (E^*, J^\pi) = G_\chi (E^*) \)

Weisskopf-Ewing hypothesis

\[\rightarrow \text{Valid at excitation energies where most of the decay is dominated by the level density!} \]

\[\rightarrow \text{Strong mixing of } J\pi \text{ states} \]

\[\rightarrow \text{Discrete levels} \rightarrow \text{high } J\pi \text{ selectivity} \]

\[\rightarrow \text{Measurements that test the validity of the surrogate method are needed!} \]
SURROGATE METHOD APPLIED TO FISSION

$^{243}\text{Am}(^{3}\text{He},\alpha)^{242}\text{Am}^*$

$^{243}\text{Am}(^{3}\text{He},\alpha f)^{243}\text{Cm}^*$

$^{241}\text{Am}(n,f)$
$T_{1/2}=432$ y

$^{242}\text{Cm}(n,f)$
$T_{1/2}=163$ d

Nice agreement even at low neutron energy!

SURROGATE METHOD APPLIED TO CAPTURE

Capture probability:

\[P_\gamma (E^*) = \frac{N_{ej-\gamma} (E^*)}{N_{ej} (E^*) \cdot \varepsilon_\gamma (E^*)} \]
RESULTS FOR $^{174}\text{Yb}(^{3}\text{He},p)^{176}\text{Lu}$ AS SURROGATE FOR $^{175}\text{Lu}(n,\gamma)$

Over-estimation by a factor 3
\[P_\chi (E^*) = \sum_{J^\pi} P_{\text{form}}^{\text{CN}} (E^*, J^\pi) \cdot G_\chi (E^*, J^\pi) \]

Gaussian independent of \(E^*\)

\[
\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(J-J_\chi)^2}{2\sigma^2}}
\]

Branching ratios calculated with TALYS

Two free parameters: \(<J>\) and \(\sigma\)

\(\chi^2 / \text{ndf} = 44.4 / 21\)

- \(p0 = 7.096 \pm 0.055\)
- \(p1 = 2.304 \pm 0.116\)

\(<\ell> = 7 \hbar\)

\(\sigma = 2.3 \hbar\)

174Yb(\(^3\)He,p)\(^{176}\)Lu*
\(S_n = 6.27 \text{MeV} \)

\(E^* \)

\((n, \gamma) \) competes with \((n,n)\)

\(\langle \ell \rangle = 1/2 \hbar \) is exactly the \(\ell \) carried away by the neutron in the compound elastic \((n,n)\) reaction \(\rightarrow \) dominant decay!

\(P\gamma \) decreases very quickly!
\((^3\text{He},p)\) reaction CASE

\[S_n = 6.27 \text{MeV} \]

\[176 \text{Lu}^* \rightarrow 175 \text{Lu} \]

\[J=7 \]

\[7/2^+ \]

\[9/2^+ \]

\[11/2^+ \]

\(\rightarrow \) higher spins populated

\(\rightarrow \) neutron emission forbidden

\(\rightarrow \) radiative capture is the only way of deexcitation!
\[S_n = 6.27 \text{MeV} \]

\[\gamma \to \text{the first excited states of the residual nucleus after neutron emission may also be forbidden...} \]

The neutron emission channel does not verify the Weisskopf-Ewing approximation in the vicinity of \(S_n \)

\(\rightarrow \text{situation is reduced as one moves to heavier nuclei (with higher level densities)} \)
RESULTS FOR $^{174}\text{Yb}(^3\text{He},\alpha)^{173}\text{Yb}$ AS SURROGATE FOR $^{172}\text{Yb}(n,\gamma)$

Over-estimation by a factor 10!
\[P_\chi(E^*) = \sum_{J^\pi} P^{CN}_{\text{form}}(E^*, J^\pi) \cdot G_\chi(E^*, J^\pi) \]

Two free parameters: \(\langle J \rangle \) and \(\sigma \)

\[\frac{0.5}{\sqrt{2\pi}\sigma} \exp \left(-\frac{(J - \bar{J})^2}{2\sigma^2} \right) \]

FIT

Gaussian independent of \(E^* \)

Branching ratios calculated with TALYS

\(\chi^2 / \text{ndf} = 18.74 / 29 \)

\(p_0 = 3.881 \pm 0.204 \)

\(p_1 = 3.214 \pm 0.209 \)

\(\langle \ell \rangle = 4 \hbar \)

\(\sigma = 3.2 \hbar \)
CONCLUSION

Radiative capture more sensitive than fission

Excitation energies in the vicinity of Sn

P_γ decreases very quickly! Small variation in absolute \rightarrow several factors in relative

P_γ measured in surrogate experiments over-estimated by several factors

Determination of ℓ distributions populated in ($^3\text{He},p$) and ($^3\text{He},\alpha$) \rightarrow Higher spins populated in transfer reactions

The neutron emission channel does not verify the Weisskopf-Ewing approximation in the vicinity of S_n.

PERSPECTIVES: - Use more realistic spin distributions.
- Compare our results with FRESCO (I. Thompson et al.)

2012: - ($p,d\gamma$) reaction in the rare-earth region
- (d,pf)/($d,p\gamma$) reactions in the actinide region
WHY DOES IT WORK FOR FISSION?

$B_{f_A} = 6.32\text{MeV}$

$S_n = 5.53\text{MeV}$

^{241}Am

$^{243}\text{Am}(^3\text{He,}\alpha f)^{242}\text{Am}^*$

$^{241}\text{Am}(n,f)$

$J\approx 4$

242Am^*

242Am*
WHY DOES IT WORK FOR FISSION?

\[S_n = 5.53 \text{ MeV} \]

\[B_f A = 6.32 \text{ MeV} \]

\[11/2 \rightarrow 158 \text{ keV} \]
\[9/2 \rightarrow 93 \text{ keV} \]
\[7/2 \rightarrow 41 \text{ keV} \]

\[J \approx 4 \]

\[^{243}\text{Am}(^3\text{He},\alpha f)^{242}\text{Am}^* \]

\[^{241}\text{Am}(n,f) \]

\[E^* \]

\[^{242}\text{Am}^* \]

\[I \]

\[A \]

\[B \]

\[n' \]